Киберфак – бесплатно скачать презентации PowerPoint, лекции, рефераты, шпоры, курсовые cyberfac logo
cyberfac.ru
На главную | Регистрация | Вход
  Статьи  
Главная » Статьи » Информатика » Информационные системы в экономике

Системы оптического распознавания текста

Полезная статья? Пожалуйста, поставьте "+"
К содержанию
Оптическое распознавание текста (optical character recognition, OCR) — это механический или электронный перевод изображений рукописного, машинописного или печатного текста в последовательность кодов, использующихся для представления в текстовом редакторе. Распознавание широко используется для конвертации книг и документов в электронный вид, для автоматизации систем учета в бизнесе или для публикации текста на веб-странице. Оптическое распознавание текста позволяет редактировать текст, осуществлять поиск слова или фразы, хранить его в более компактной форме, демонстрировать или распечатывать материал, не теряя качества, анализировать информацию, а также применять к тесту электронный перевод, форматирование или преобразование в речь. Оптическое распознавание текста является исследуемой проблемой в областях распознавания образов, искусственного интеллекта и компьютерного зрения.

Системы оптического распознавания текста требуют калибровки для работы с конкретным шрифтом; в ранних версиях для программирования было необходимо изображение каждого символа, программа одновременно могла работать только с одним шрифтом. В настоящее время больше всего распространены так называемые «интеллектуальные» системы, с высокой степенью точности распознающие большинство шрифтов. Некоторые системы оптического распознавания текста способны восстанавливать исходное форматирование текста, включая изображения, колонки и другие нетекстовые компоненты.

Текущее состояние технологии оптического распознавания текста

Точное распознавание латинских символов в печатном тексте в настоящее время возможно только если доступны чёткие изображения, такие как сканированные печатные документы. Точность при такой постановке задачи превышает 99 %[1], абсолютная точность может быть достигнута только путем последующего редактирования человеком. Проблемы распознавания рукописного «печатного» и стандартного рукописного текста, а также печатных текстов других форматов (особенно с очень большим числом символов) в настоящее время являются предметом активных исследований.

Точность работы методов может быть измерена несколькими способами и поэтому может сильно варьироваться. К примеру, если встречается специализированное слово, не используемое для соответствующего программного обеспечения, при поиске несуществующих слов, ошибка может увеличиться.

Распознавание символов он-лайн иногда путают с оптическим распознавания символов. Последний — это офф-лайн метод, работающий со статической формой представления текста, в то время как он-лайн распознавание символов учитывает движения во время письма. Например, в он-лайн распознавании, использующем PenPoint OS или планшетный ПК, можно определить, с какой стороны пишется строка: справа налево или слева направо.

Он-лайн системы для распознавания рукописного текста «на лету» в последнее время стали широко известны в качестве коммерческих продуктов. Алгоритмы таких устройств используют тот факт, что порядок, скорость и направление отдельных участков линий ввода известны. Кроме того, пользователь научится использовать только конкретные формы письма. Эти методы не могут быть использованы в программном обеспечении, которое использует сканированные бумажные документы, поэтому проблема распознавания рукописного «печатного» текста по-прежнему остается открытой. На изображениях с рукописным «печатным» текстом без артефактов может быть достигнута точность в 80 % — 90 %, но с такой точностью изображение будет преобразовано с десятками ошибок на странице. Такая технология может быть полезна лишь в очень ограниченном числе приложений.

Ещё одной широко исследуемой проблемой является распознавание рукописного текста. На данный момент достигнутая точность даже ниже, чем для рукописного «печатного» текста. Более высокие показатели могут быть достигнуты только с использованием контекстной и грамматической информации. Например, в процессе распознания искать целые слова в словаре легче, чем пытаться проанализировать отдельные символы из текста. Знание грамматики языка может также помочь определить, является ли слово глаголом или существительным. Формы отдельных рукописных символов иногда могут не содержать достаточно информации, чтобы точно (более 98 %) распознать весь рукописный текст.

Для решения более сложных проблем в сфере распознавания используются как правило интеллектуальные системы распознавания, такие как искусственные нейронные сети.
Категория: Информационные системы в экономике | Добавил: Ni-Cd (04 Декабрь 2011)
Просмотров: 4476 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
  Полезные материалы  

В нашем каталоге файлов можно найти много полезной информации. Также советуем заглянуть в каталог статей: в нем есть полезные статьи по темам: Экономика предприятия, Общая экономика, Финансы и Кредит, также Словарь терминов по экономике, Маркетинг, Бухучет и Мировая экономика
Также есть полезная страница Факультеты МИФИ, которая расскажет о том, какие есть в МИФИ факультеты.
Меню
 

Навигация
Высокоуровневые методы информатики и программирования [28]
Информатика и программирование [34]
Информационные системы в экономике [36]
Языки программирования и методы трансляции [15]
Алгоритмизация и программирование [61]
 

Поиск
 

Онлайн
Онлайн всего: 1
Гостей: 1
Пользователей: 0
 

Статистика


Рейтинг@Mail.ru

 


2007 - 2017 © Ni-Cd. All Rights Reserved