Киберфак – бесплатно скачать презентации PowerPoint, лекции, рефераты, шпоры, курсовые cyberfac logo
cyberfac.ru
На главную | Регистрация | Вход
  Статьи  
Главная » Статьи » Математика » Математический анализ (МатАн)

Аналитическая геометрия в пространстве. плоскость.

Полезная статья? Пожалуйста, поставьте "+"
К Содержанию

Уравнение F(x, y, z) = 0 определяет в пространстве Oxyz некоторую поверхность, т.е. геометрическое место точек, координаты которых x, y, z удовлетворяют этому уравнению. Это уравнение называется уравнением поверхности, а x, y, z – текущими координатами.

Однако, часто поверхность задаётся не уравнением, а как множество точек пространства, обладающих тем или иным свойством. В этом случае требуется найти уравнение поверхности, исходя из её геометрических свойств.

 

ПЛОСКОСТЬ. НОРМАЛЬНЫЙ ВЕКТОР ПЛОСКОСТИ. УРАВНЕНИЕ ПЛОСКОСТИ, ПРОХОДЯЩЕЙ ЧЕРЕЗ ДАННУЮ ТОЧКУ

Рассмотрим в пространстве произвольную плоскостьσ. Её положение определяется заданием вектора , перпендикулярного этой плоскости, и некоторой фиксированной точки M0(x0, y0, z0), лежащей в плоскости σ.

Вектор перпендикулярный плоскости σ, называется нормальным вектором этой плоскости. Пусть вектор имеет координаты .

Выведем уравнение плоскости σ, проходящей через данную точку M0 и имеющей нормальный вектор . Для этого возьмём на плоскости σ произвольную точку M(x, y, z) и рассмотрим вектор .

Для любой точки MÎ σ вектор .Поэтому их скалярное произведение равно нулю . Это равенство – условие того, что точка MÎ σ. Оно справедливо для всех точек этой плоскости и нарушается, как только точка M окажется вне плоскости σ.

Если обозначить через радиус-вектор точки M, – радиус-вектор точкиM0, то и уравнение можно записать в виде

.

Это уравнение называется векторным уравнением плоскости. Запишем его в координатной форме. Так как , то

.

Итак, мы получили уравнение плоскости, проходящей через данную точку. Таким образом, для того чтобы составить уравнение плоскости, нужно знать координаты нормального вектора и координаты некоторой точки, лежащей на плоскости.

Заметим, что уравнение плоскости является уравнением 1-ой степени относительно текущих координат x, y и z.

Примеры.

  1. Составить уравнение плоскости, проходящей через точку М(1;-2;3) перпендикулярно вектору .

    Используя выведенное уравнение, получим 2(x-1)+0(y+2)+4(z-3)=0 или x+2z-7=0.

  2. Составить уравнение плоскости, проходящей через точки A(1;2;3), B(-1;0;0), C(3;0;1).

    Чтобы составить требуемое уравнение, нужно найти вектор перпендикулярный плоскости. Заметим, что таким вектором будет вектор . Найдем это вектор. . Тогда

    .

    Взяв в качестве точки, через которую проходит плоскость точку A, получим уравнение –2(x-1)-10(y-2)+8(z-3)=0 или x+5y-4z+1=0.

ОБЩЕЕ УРАВНЕНИЕ ПЛОСКОСТИ

Можно показать, что любое уравнение первой степени относительно декартовых координат x, y, z представляет собой уравнение некоторой плоскости. Это уравнение записывается в виде:

Ax+By+Cz+D=0

и называется общим уравнением плоскости, причём координаты A, B, C здесь являются координатами нормального вектора плоскости.

Рассмотрим частные случаи общего уравнения. Выясним, как располагается плоскость относительно системы координат, если один или несколько коэффициентов уравнения обращаются в ноль.





  1. Свободный член равен нулю D= 0.

    В этом случае уравнение плоскости принимает видAx+Cy+Bz=0. Т.к. числа x=0, y=0, z=0 удовлетворяют уравнению плоскости, то она проходит через начало координат.

  2. Один из коэффициентов при текущих координатах равен нулю. Пусть например A =0. В этом случае уравнение плоскости имеет вид By+Cz+D=0. Нормальный вектор плоскости имеет координаты и перпендикулярен оси Ox. Следовательно, плоскость параллельна оси Ox.

    Аналогично, если B= 0, то плоскость параллельна оси Oy и C= 0 – плоскость параллельна оси Oz.

    Т.о., если в уравнении плоскости один из коэффициентов при текущей координате равен нулю, то плоскость параллельна соответствующей координатной оси.

  3. Коэффициент при текущей координате и свободный член равны нулю. Например, A = D = 0. В этом случае уравнению By + Cz = 0 соответствует плоскость, проходящая через начало координат (согласно п.1). Кроме того, учитывая п.2, данная плоскость должна быть параллельна оси Ox. Следовательно, плоскость проходит через ось Ox.

    Аналогично, при B=D=0 плоскость Ax+Cz=0 проходит через ось Oy. При C=D=0 плоскость проходит через ось Oz.

  4. Два коэффициента при текущих координатах раны нулю. Пусть, например, A=B=0. Тогда плоскость Cz+D=0 в силу п.2 будет параллельна осям Oxи Oy, а следовательно параллельна координатной плоскости xOy, и проходит через точку с координатой . Аналогично, уравнениям Ax+D=0 и By+D=0 соответствуют плоскости, параллельные координатным плоскостям yOzи xOz.
  5. Два коэффициента при текущих координатах и свободный член равны нулю. Пусть, например, A=B=D=0. Тогда уравнение плоскости имеет вид Cz=0 или z=0. Эта плоскость проходит через начало координат и параллельна осям Ox и Oy, т. е. уравнение определяет координатнуюплоскость xOy. Аналогично, x=0 – уравнение координатной плоскости yOz и y=0 – плоскость xOz.

 

УРАВНЕНИЕ ПЛОСКОСТИ В ОТРЕЗКАХ. ПОСТРОЕНИЕ ПЛОСКОСТЕЙ









Рассмотрим плоскость, пересекающую все три координатные оси и не проходящую через начало координат. Пусть плоскость задана своим общим уравнением Ax+By+Cz+D=0, где ни один из коэффициентов не равен нулю.

Преобразуем это уравнение.

Ax+By+Cz=-D. Поделим полученное равенство на –D и запишем его в виде:

.

Тогда, обозначив , приходим к уравнению . Это уравнение и называется уравнением плоскости в отрезках.

Выясним геометрический смысл чисел a, b и c. Если положим y=z=0, то изуравнения x=a. Т.е. данному уравнению удовлетворяет точка с координатами (0; 0; 0). Следовательно, a – это длина отрезка, отсекаемого плоскостью на оси Ox. Аналогично, можно показать, что b и c – длины отрезков, отсекаемых рассматриваемой плоскостью на осях Oy и Oz.

Уравнением плоскости в отрезках удобно пользоваться для построения плоскостей.

Примеры.

  1. Построить плоскость 2x+3y+6z-6=0. Приведём это уравнение к уравнению плоскости в отрезках: .

  2. 2x-y-4z-4=0. Рассмотрим еще один способ построения плоскостей. Для построения плоскости достаточно найти три какие-либо её точки, не лежащие на одной прямой. Удобнее всего определять точки пересечения плоскости с осями координат.

  3. 2x+5z-10=0. Плоскость параллельна оси Oy. Найдём точки пересечения с осями Ox и Oz.
  4. Плоскость 3x+2y=0 проходит через ось Oz.
  5. 2z+5=0, z=-5/2.

Категория: Математический анализ (МатАн) | Добавил: Ni-Cd (04 Декабря 2011)
Просмотров: 4882 | Рейтинг: 5.0/1
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
  Полезные материалы  

В нашем каталоге файлов можно найти много полезной информации. Также советуем заглянуть в каталог статей: в нем есть полезные статьи по темам: Экономика предприятия, Общая экономика, Финансы и Кредит, также Словарь терминов по экономике, Маркетинг, Бухучет и Мировая экономика
Также есть полезная страница Факультеты МИФИ, которая расскажет о том, какие есть в МИФИ факультеты.
Меню
 

Навигация
Теория вероятностей и математическая статистика (ТерВер и МатСтат) [17]
Математический анализ (МатАн) [67]
Математические методы в экономике [24]
 

Поиск
 

Онлайн
Онлайн всего: 1
Гостей: 1
Пользователей: 0
 

Статистика


Рейтинг@Mail.ru

 


2007 - 2024 © Ni-Cd. All Rights Reserved