Киберфак – бесплатно скачать презентации PowerPoint, лекции, рефераты, шпоры, курсовые cyberfac logo
cyberfac.ru
На главную | Регистрация | Вход
  Статьи  
Главная » Статьи » Математика » Математический анализ (МатАн)

Декартова система координат

Полезная статья? Пожалуйста, поставьте "+"
К Содержанию

Пусть в пространстве задана точка O и три некомпланарных вектора .

Декартовой системой координат в пространстве (на плоскости) называется совокупность точки и базиса, т.е. совокупность точки и трёх некомпланарных векторов (2-х неколлинеарных векторов), выходящих из этой точки.

Точка O называется началом координат; прямые, проходящие через начало координат в направлении базисных векторов, называются осями координат – осью абсцисс, ординат и аппликат. Плоскости, проходящие через оси координат, называют координатными плоскостями.

Рассмотрим в выбранной системе координат произвольную точку M. Введём понятие координаты точки M. Вектор , соединяющий начало координат с точкой M. называется радиус-вектором точки M.

Вектору в выбранном базисе можно сопоставить тройку чисел – его координаты: .

Координаты радиус-вектора точки M. называются координатами точки M. в рассматриваемой системе координат. M(x,y,z). Первая координата называется абсциссой, вторая – ординатой, третья – аппликатой.

Аналогично определяются декартовы координаты на плоскости. Здесь точка имеет только две координаты – абсциссу и ординату.

Легко видеть, что при заданной системе координат каждая точка имеет определённые координаты. С другой стороны, для каждой тройки чисел найдётся единственная точка, имеющая эти числа в качестве координат.

Если векторы, взятые в качестве базиса, в выбранной системе координат, имеют единичную длину и попарно перпендикулярны, то система координат называется декартовой прямоугольной системой координат. В этом случае основные векторы принято обозначать буквами , а оси координат Ox, Oy и Oz.

Таким образом, любой вектор в декартовой прямоугольной системе координат можно записать в виде: .

Примеры.

  1. Построить на плоскости в декартовой системе координат вектор . Вектор примем в качестве радиус-вектора точки

    М(-1;3).

  2. Построить вектор . Вектор примем в качестве радиус-вектора точки N(2; -1; 3).

     

    В дальнейшем мы в основном будем использовать только декартову прямоугольную систему координат.










Категория: Математический анализ (МатАн) | Добавил: Ni-Cd (04 Декабря 2011)
Просмотров: 3068 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
  Полезные материалы  

В нашем каталоге файлов можно найти много полезной информации. Также советуем заглянуть в каталог статей: в нем есть полезные статьи по темам: Экономика предприятия, Общая экономика, Финансы и Кредит, также Словарь терминов по экономике, Маркетинг, Бухучет и Мировая экономика
Также есть полезная страница Факультеты МИФИ, которая расскажет о том, какие есть в МИФИ факультеты.
Меню
 

Навигация
Теория вероятностей и математическая статистика (ТерВер и МатСтат) [17]
Математический анализ (МатАн) [67]
Математические методы в экономике [24]
 

Поиск
 

Онлайн
Онлайн всего: 84
Гостей: 84
Пользователей: 0
 

Статистика


Рейтинг@Mail.ru

 


2007 - 2024 © Ni-Cd. All Rights Reserved