Киберфак – бесплатно скачать презентации PowerPoint, лекции, рефераты, шпоры, курсовые cyberfac logo
cyberfac.ru
На главную | Регистрация | Вход
  Статьи  
Главная » Статьи » Математика » Математический анализ (МатАн)

Дифференцирование функций, заданных параметрически

Полезная статья? Пожалуйста, поставьте "+"
К Содержанию

Пусть даны два уравнения

x=x(t),y=y(t), где t Î [T1, T2]. (1)

Каждому значению t из [T1, T2] соответствуют определенные значения x и y. Если рассматривать значения x и y как координаты точки на плоскости xOy, то каждому значению t будет соответствовать определенная точка плоскости. Когда t изменяется от T1 до T2, эта точка на плоскости описывает некоторую кривую. Уравнения (1) называются параметрическими уравнениями этой кривой, t называется параметром, а способ задания кривой уравнениями (1) называется параметрическим.

Предположим, что функция x=x(t) имеет обратную t=t(x). Тогда, очевидно, у является функцией от x: y=y[t(x)]. Следовательно, уравнения (1) определяют y как функцию от x, и говорят, что функция y от x задается параметрически.

При рассмотрении функций, заданных параметрически, исключение параметра не всегда возможно. Во многих случаях удобнее задавать различные значения t и затем вычислять соответствующие значения аргумента x и функции y.

Пример. Пусть кривая задана параметрическими уравнениями:

Построим эту кривую на плоскости, придавая различные значения параметру t и находя соответствующие значения х и у.

При t =0 M(R, 0).

Таким образом, получаем окружность с центром в начале координат, радиуса R. Здесь t обозначает угол, образованный радиусом, проведенным в некоторую точку окружности М(x, y), и осью Ox.

Если исключим из этих уравнений параметр t, то получим уравнение окружности, содержащее только x и y. Возводя в квадрат параметрические уравнения и складывая их, находим:

x2+ y2=R2(cos2t + sin2t) или x2+ y2=R2.

Выведем правило нахождения производных функций, заданных параметрически. Пусть x=x(t), y=y(t), причем на некотором отрезке [T1, T2] функции x(t) и y(t) дифференцируемы и x' ≠ 0.

Т.к. у – функция, зависящая от переменной x, то будем считать, что функция x=x(t) имеет обратную t=t(x).

Будем обозначать: yx' – производная функции по переменной x, yt', xt', tx' – соответственно производные по t и х.

Воспользовавшись правилом дифференцирования сложной функции, получим . Производную tx' найдем по правилу дифференцирования обратной функции .

Окончательно, .

Итак,

Полученную функцию можно рассматривать как функцию, заданную параметрически: .

Используя эту формулу, можно находить и производные высших порядков функций, заданных параметрически. Найдем . По определению второй производной . Учитывая, что yx' есть функция параметра t, yx'=f(t), получаем:

Примеры.

  1. , y = arcsin (t–1). Найдем .

    Следовательно, .

  2. Найти угловой коэффициент касательной к циклоиде x = a·(t – sin t), y = a·(1 – cost)

    в произвольной точке (0 ≤t≤ 2·π).

    Угловой коэффициент касательной .

    x' = a·(1 – cost) ,y' = a·sin t. Поэтому .

  3. Найти .

Категория: Математический анализ (МатАн) | Добавил: Ni-Cd (04 Декабря 2011)
Просмотров: 4074 | Рейтинг: 2.0/1
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
  Полезные материалы  

В нашем каталоге файлов можно найти много полезной информации. Также советуем заглянуть в каталог статей: в нем есть полезные статьи по темам: Экономика предприятия, Общая экономика, Финансы и Кредит, также Словарь терминов по экономике, Маркетинг, Бухучет и Мировая экономика
Также есть полезная страница Факультеты МИФИ, которая расскажет о том, какие есть в МИФИ факультеты.
Меню
 

Навигация
Теория вероятностей и математическая статистика (ТерВер и МатСтат) [17]
Математический анализ (МатАн) [67]
Математические методы в экономике [24]
 

Поиск
 

Онлайн
Онлайн всего: 65
Гостей: 65
Пользователей: 0
 

Статистика


Рейтинг@Mail.ru

 


2007 - 2024 © Ni-Cd. All Rights Reserved