Применяя общий способ нахождения производной с помощью предела можно получить простейшие формулы дифференцирования. Пусть u=u(x),v=v(x) – две дифференцируемые функции от переменной x.
- (справедлива для любого конечного числа слагаемых).
- .
- .
а) .
б) .
Доказательство формулы 3.
Пусть y = u(x) + v(x). Для значения аргумента x+Δx имеем y(x+Δx)=u(x+Δx) + v(x+Δx).
Тогда
Δy=y(x+Δx) – y(x) = u(x+Δx) + v(x+Δx) – u(x) – v(x) = Δu +Δv.
Следовательно,
.
Доказательство формулы 4.
Пусть y=u(x)·v(x). Тогда y(x+Δx)=u(x+Δx)·v(x+Δx), поэтому
Δy=u(x+Δx)·v(x+Δx) – u(x)·v(x).
Заметим, что поскольку каждая из функций u и v дифференцируема в точке x, то они непрерывны в этой точке, а значит u(x+Δx)→u(x), v(x+Δx)→v(x), при Δx→0.
Поэтому можем записать
На основании этого свойства можно получить правило дифференцирования произведения любого числа функций.
Пусть, например, y=u·v·w. Тогда,
y ' = u '·(v·w) + u·(v ·w) ' = u '·v·w + u·(v '·w +v·w ') = u '·v·w + u·v '·w + u·v·w '.
Доказательство формулы 5.
Пусть . Тогда
При доказательстве воспользовались тем, что v(x+Δx)→v(x) при Δx→0.
Примеры.
- Если , то
- y = x3 – 3x2 + 5x + 2. Найдем y '(–1).
y ' = 3x2 – 6x+ 5. Следовательно, y '(–1) = 14.
- y = ln x · cos x, то y ' = (ln x) ' cos x + ln x (cos x) ' =1/x∙cos x – ln x · sin x.
-
Таким образом,
- Аналогично для y= ctgx,