Киберфак – бесплатно скачать презентации PowerPoint, лекции, рефераты, шпоры, курсовые cyberfac logo
cyberfac.ru
На главную | Регистрация | Вход
  Статьи  
Главная » Статьи » Математика » Математический анализ (МатАн)

Понятие обратной функции

Полезная статья? Пожалуйста, поставьте "+"
К Содержанию

Начнем с примера. Рассмотрим функцию y= x3. Будем рассматривать равенство y= x3 как уравнение относительно x. Это уравнение для каждого значения у определяет единственное значение x: . Геометрически это значит, что всякая прямая параллельная оси Oxпересекает график функции y= x3 только в одной точке. Поэтому мы можем рассматривать x как функцию от y. Функция называется обратной по отношению к функции y= x3.

Прежде чем перейти к общему случаю, введем определения.

Функция y = f(x) называется возрастающей на некотором отрезке, если большему значению аргумента x из этого отрезка соответствует большее значение функции, т.е. если x2>x1, то f(x2) > f(x1).

Аналогично функция называется убывающей, если меньшему значению аргумента соответствует большее значение функции, т.е. еслих2 < х1 , то f(x2) > f(х1).

Итак, пусть дана возрастающая или убывающая функция y= f(x), определенная на некотором отрезке [a; b]. Для определенности будем рассматривать возрастающую функцию (для убывающей все аналогично).

Рассмотрим два различных значения х1 и х2. Пусть y1=f(x1), y2=f(x2). Из определения возрастающей функции следует, что если x1<x2, то у1<у2. Следовательно, двум различным значениям х1 и х2 соответствуют два различных значения функции у1 и у2. Справедливо и обратное, т.е. если у1<у2, то из определения возрастающей функции следует, чтоx1<x2. Т.е. вновь двум различным значениям у1 и у2 соответствуют два различных значенияx1 и x2. Т.о., между значениями x и соответствующими им значениями y устанавливается взаимно однозначное соответствие, т.е. уравнение y=f(x) для каждого y (взятого из области значений функции y=f(x)) определяет единственное значение x, и можно сказать, что x есть некоторая функция аргумента y: x= g(у).



 

Эта функция называется обратной для функции y=f(x). Очевидно, что и функция y=f(x) является обратной для функции x=g(у).

Заметим, что обратная функция x=g(y) находится путем решения уравнения y=f(x) относительно х.

Пример. Пусть дана функция y = ex. Эта функция возрастает при –∞ < x <+∞. Она имеет обратную функцию x = lny. Область определения обратной функции 0 < y < + ∞.

Сделаем несколько замечаний.

Замечание 1. Если возрастающая (или убывающая) функция y=f(x) непрерывна на отрезке [a; b], причем f(a)=c, f(b)=d, то обратная функция определена и непрерывна на отрезке [c; d].

Замечание 2. Если функция y=f(x) не является ни возрастающей, ни убывающей на некотором интервале, то она может иметь несколько обратных функций.

Пример. Функция y=x2 определена при –∞<x<+∞. Она не является ни возрастающей, ни убывающей и не имеет обратной функции. Однако, если мы рассмотриминтервал 0≤x<+∞, то здесь функция является возрастающей и обратной для нее будет . На интервале – ∞ <x≤ 0 функция – убывает и обратная для нее .

Замечание 3. Если функции y=f(x) и x=g(y) являются взаимно обратными, то они выражают одну и ту же связь между переменными x и y. Поэтому графикомих является одна и та же кривая. Но если аргумент обратной функции мы обозначим снова через x, а функцию через y и построим их в одной системе координат, то получим уже два различных графика. Легко заметить, что графики будут симметричны относительно биссектрисы 1-го координатного угла.

Категория: Математический анализ (МатАн) | Добавил: Ni-Cd (04 Декабря 2011)
Просмотров: 3300 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
  Полезные материалы  

В нашем каталоге файлов можно найти много полезной информации. Также советуем заглянуть в каталог статей: в нем есть полезные статьи по темам: Экономика предприятия, Общая экономика, Финансы и Кредит, также Словарь терминов по экономике, Маркетинг, Бухучет и Мировая экономика
Также есть полезная страница Факультеты МИФИ, которая расскажет о том, какие есть в МИФИ факультеты.
Меню
 

Навигация
Теория вероятностей и математическая статистика (ТерВер и МатСтат) [17]
Математический анализ (МатАн) [67]
Математические методы в экономике [24]
 

Поиск
 

Онлайн
Онлайн всего: 1
Гостей: 1
Пользователей: 0
 

Статистика


Рейтинг@Mail.ru

 


2007 - 2024 © Ni-Cd. All Rights Reserved