Полезная статья? Пожалуйста, поставьте "+"
К СодержаниюПРЕДЕЛ ФУНКЦИИ
Пусть функция y=f(x) определена в некоторой окрестности точки a. Предположим, что независимая переменная x неограниченно приближается к числу a. Это означает, что мы можем придавать х значения сколь угодно близкие к a, но не равные a. Будем обозначать это так x → a. Для таких x найдем соответствующие значения функции. Может случиться, что значения f(x) также неограниченно приближаются к некоторому числу b.Тогда говорят, что число b есть предел функции f(x) при x → a.
Введем строгое определение предела функции.
Функция y=f(x) стремится к пределу b при x → a, если для
каждого положительного числа ε, как бы мало оно не было, можно указать
такое положительное число δ, что при всех x ≠ a из области определения
функции, удовлетворяющих неравенству |x - a| < δ, имеет место неравенство |f(x) - b| < ε. Если b есть предел функции f(x) при x → a, то пишут или f(x) → b при x → a.
Проиллюстрируем это определение на графике функции. Т.к. из неравенства |x - a| < δ должно следовать неравенство |f(x) - b| < ε, т.е. при x Î (a - δ, a + δ) соответствующие значения функции f(x) Î (b - ε, b + ε), то, взяв произвольное ε > 0, мы можем подобрать такое число δ, что для всех точек x, лежащих в δ – окрестности точки a, соответствующие точки графика функции должны лежать внутри полосы шириной 2ε, ограниченной прямыми y = b – ε и y = b + ε.
Несложно заметить, что предел функции должен обладать теми же свойствами, что и предел числовой последовательности, а именно и если при x → a функция имеет предел, то он единственный.
Примеры.
- Найти предел функции y=2x+1 при x → 1. Используя график функции, можно увидеть, что если x → 1 с любой стороны, то соответствующие точки M(x, y) графика стремятся к точке M(1, 3), т.е. можно предположить, что . Докажем это. Зададим произвольное число ε > 0. Нам нужно, чтобы выполнялось неравенство |(2x+1) – 3|<ε или |2x–2| < ε, откуда |x– 1| < ε. Таким образом, если положить δ = ε/2, то при всех x, удовлетворяющих неравенству |x– 1|<δ, будет выполняться неравенство |y – 3| < ε. По определению предела это и означает, что 3 есть предел функции y=2x+1 при x → 1.
- Найти предел функции y=ex+1 при x → 0.
Используя график заданной функции, несложно заметить, .
|
|
ПОНЯТИЕ ПРЕДЕЛА ФУНКЦИИ
В БЕСКОНЕЧНО УДАЛЕННОЙ ТОЧКЕ
До сих пор мы рассматривали пределы для случая, когда переменная величина x стремилась к определенному постоянному числу.
Будем говорить, что переменная x стремится к бесконечности, если для каждого заранее заданного положительного числа M (оно может быть сколь угодно большим) можно указать такое значение х=х0, начиная с которого, все последующие значения переменной будут удовлетворять неравенству |x|>M.
Например, пусть переменная х принимает значения x1= –1, x2=2, x3= –3, …, xn=(–1)nn, … Ясно, что это бесконечно большая переменная величина, так как при всех M > 0 все значения переменной, начиная с некоторого, по абсолютной величине будут больше M.
Переменная величина x → +∞, если при произвольном M > 0 все последующие значения переменной, начиная с некоторого, удовлетворяют неравенству x > M.
Аналогично, x → – ∞, если при любом M > 0 x < -M.
Будем говорить, что функция f(x) стремится к пределу b при x → ∞, если для произвольного малого положительного числа ε можно указать такое положительное число M, что для всех значений x, удовлетворяющих неравенству |x|>M, выполняется неравенство |f(x) - b| < ε.
Обозначают .
Примеры.
- Используя определение, доказать, что .
Нужно доказать, что при произвольном ε будет выполняться неравенство , как только |x|>M, причем число М должно определяться выбором ε. Записанное неравенство эквивалентно следующему , которое будет выполняться, если |x|>1/ε=M. Это и значит, что (см. рис.).
- Несложно заметить, что .
- не существует.
БЕСКОНЕЧНО БОЛЬШИЕ ФУНКЦИИ
Ранее мы рассмотрели случаи, когда функция f(x) стремилась к некоторому конечному пределу b при x → a или x → ∞.
Рассмотрим теперь случай, когда функция y=f(x) стремится к бесконечности при некотором способе изменения аргумента.
Функция f(x) стремится к бесконечности при x → a, т.е. является бесконечно большой величиной, если для любого числа М, как бы велико оно ни было, можно найти такое δ > 0, что для всех значений х≠a, удовлетворяющих условию |x-a| < δ, имеет место неравенство |f(x)| > M.
Если f(x) стремится к бесконечности при x→a, то пишут или f(x)→∞ при x→a.
Сформулируйте аналогичное определение для случая, когда x→∞.
Если f(x) стремится к бесконечности при x→a и при этом принимает только положительные или только отрицательные значения, соответственно пишут или .
Примеры.
- .
- (см. рис.).
- .
- Функция при x→0 не стремится ни к какому пределу (см. рис.).
ОГРАНИЧЕННЫЕ ФУНКЦИИ
Пусть задана функция y=f(x), определенная на некотором множестве D значений аргумента.
Функция y=f(x) называется ограниченной на множестве D, если существует положительное число М такое, что для всех значений x из рассматриваемого множества, выполняется неравенство |f(x)|≤M. Если же такого числа М не существует, то функция f(x) называется неограниченной на множестве D.
Примеры.
- Функция y=sin x, определенная при -∞<x<+∞, является ограниченной, так как при всех значениях x |sin x|≤1 = M.
- Функция y=x2+2 ограничена, например, на отрезке [0, 3], так как при всех x из этого отрезка |f(x)| ≤f(3) = 11.
- Рассмотрим функцию y=ln x при x Î (0; 1). Эта функция неограниченна на указанном отрезке, так как при x→0 ln x→-∞.
Функция y=f(x) называется ограниченной при x → a, если существует окрестность с центром в точке а, в которой функция ограничена.
Функция y=f(x) называется ограниченной при x→∞, если найдется такое число N>0, что при всех значениях х, удовлетворяющих неравенству |x|>N, функция f(x) ограничена.
Установим связь между ограниченной функцией и функцией, имеющей предел.
Теорема 1. Если и b – конечное число, то функция f(x) ограничена при x→a.
Доказательство. Т.к. , то при любом ε>0 найдется такое число δ>0, что при вех значениях х, удовлетворяющих неравенству |x-a|<δ, выполняется неравенство |f(x) –b|<ε. Воспользовавшись свойством модуля |f(x) – b|≥|f(x)| - |b|, последнее неравенство запишем в виде |f(x)|<|b|+ ε. Таким образом, если положить M=|b|+ ε, то при x→a |f(x)|<M.
Замечание. Из определения ограниченной функции следует, что если ,
то она является неограниченной. Однако обратное неверно: неограниченная
функция может не быть бесконечно большой. Приведите пример.
Теорема 2. Если , то функция y=1/f(x) ограничена при x→a.
Доказательство. Из условия теоремы следует, что при произвольном ε>0 в некоторой окрестности точки a имеем |f(x) – b|<ε. Т.к. |f(x) – b|=|b – f(x)| ≥|b| - |f(x)|, то |b| - |f(x)|< ε. Следовательно, |f(x)|>|b| - ε >0. Поэтому и .
|