- Рассмотрим функцию f(x)=ex. Представим ее по формуле МакЛорена в виде суммы многочлена и некоторого остатка. Для этого найдем производные до (n+1) порядка:
Таким образом, получаем
Используя эту формулу и придавая x различные значения, мы сможем вычислить значение ex.
Например, при x=1, ограничиваясь n=8, получим формулу, позволяющую найти приближенное значение числа e:
причем остаток
Отметим, что для любого x Î R остаточный член
Действительно, так как ξ Î (0; x), то величина eξ ограничена при фиксированном x. При x> 0 eξ < ex. Докажем, что при фиксированном x
Имеем
Если x зафиксировано, то существует натуральное число N такое, что |x|<N.
Обозначим
Заметив, что 0<q<1, при n>N можем написать
Но
, не зависящая от n, а
так как q<1. Поэтому
Следовательно,
Таким образом, при любом x, взяв достаточное число слагаемых, мы можем вычислить ex с любой степенью точности.
- Выпишем разложение по формуле МакЛорена для функции f(x)=sin x.
Найдем последовательные производные от функции f(x)=sin x.
Подставляя полученные значения в формулу МакЛорена, получим разложение:
Несложно заметить, что преобразовав n-й член ряда, получим
.
Так как
, то аналогично разложению ex можно показать, что
для всех x.
Пример. Применим полученную формулу для приближенного вычисления sin 20°. При n=3 будем иметь:
Оценим сделанную погрешность, которая равна остаточному члену:
Таким образом, sin 20°= 0,342 с точностью до 0,001.
- f(x) = cos x. Аналогично предыдущему разложению можно вывести следующую формулу:
Здесь также
для всех x. Докажите формулу самостоятельно.
- f(x)=ln (1+x). Заметим, что область определения этой функции D(y)=(–1; +∞).
Найдем формулу МакЛорена для данной функции.
Подставим все найденные производные в ряд МакЛорена.
Можно доказать, что если x Î (–1;1],то
, т.е. выведенная формула справедлива при x Î ( –1;1].
- f(x) = (1+x)m, где m Î R, m≠0.
При m≠Z данная функция определена при x> –1. Найдем формулу МакЛорена для этой функции:
И следовательно,
Можно показать, что при |x|<1