Киберфак – бесплатно скачать презентации PowerPoint, лекции, рефераты, шпоры, курсовые cyberfac logo
cyberfac.ru
На главную | Регистрация | Вход
  Статьи  
Главная » Статьи » Математика » Математический анализ (МатАн)

Скалярное произведение векторов и его свойства

Полезная статья? Пожалуйста, поставьте "+"
К Содержанию

Мы рассмотрели умножение вектора на число. Однако во многих задачах механики и физики встречается операция умножения вектора на вектор. Но при этом результат может быть как числом, так и вектором. Поэтому рассматривают два вида умножения векторов: скалярное и векторное.

Пусть даны два вектора и , угол между, которыми равен .

Скалярным произведением векторов и называется число, равное произведению длин этих векторов на косинус угла между ними. Скалярное произведение обозначается . Итак, .

Если один из векторов нулевой, то угол не определен, и скалярное произведение по определения считается равным нулю.

Рассмотрим свойства скалярного произведения.

  1. Скалярное произведение двух векторов подчиняется коммутативному закону, т.е. для любых векторов и .

    Очевидно, из определения скалярного произведения:

    .

  2. Для любого числа λ и любых векторов имеем:

    .

    Доказательство. Ограничимся случаем, когда λ > 0. В этом случае угол между векторами и совпадает с углом между векторами и , .

    Поэтому . Откуда

    Аналогично доказывается и равенство .

    Случай λ <0 рассмотреть самостоятельно.

  3. Для любых векторов выполняется равенство .

    Доказательство. Используя определение скалярного произведения и свойства проекций вектора на ось, будем иметь

  4. Для любого вектора выполняется соотношение.

    Действительно, так как , то .

    Из этого свойства в частности следует .

  5. Скалярное произведение двух векторов равно нулю тогда и только тогда,когда равен нулю один из сомножителей или векторы перпендикулярны.

    Это свойство очевидно из определения скалярного произведения.

    Таким образом, необходимым и достаточным условием ортогональности двух векторов является равенство нулю их скалярного произведения.

    Пример. Дан вектор . Известно, что

    Найти .

    Имеем, т.е. .

    Найдем:

    Следовательно, .

Рассмотрим, как находится скалярное произведение векторов, если они заданы в координатной форме. Пусть даны два вектора и .

Рассмотрим сначала все возможные скалярные произведения векторов друг на друга.

Поэтому

Итак, скалярное произведение векторов равно сумме произведений соответствующих координат: .

Это соотношение позволяет вычислить длину вектора через его координаты:

.

Далее из определения скалярного произведения находим

.

Выражая скалярное произведение и длины векторов через их координаты,получим формулу для нахождения косинуса угла между векторами

.

Условие ортогональности двух векторов:

или .

Т.о., для того чтобы два вектора были перпендикулярны необходимо и достаточно, чтобы сумма произведений соответствующих координат этих векторов была равна нулю.

Примеры.

  1. Пусть А(-1; 1; 0), B(3; 1; -2), . Найти:
    1. ;
    2. и ;
    3. .
      1. .
      2. .
      3. .
  2. Найти в , если известны координаты его вершин A(1; 5; 6),

    B(5; 3; 10), C(2; 1; 14).

  3. При каком значении m векторы и перпендикулярны?

    Условие ортогональности двух векторов .

    . Следовательно, m = 15.

Категория: Математический анализ (МатАн) | Добавил: Ni-Cd (04 Декабря 2011)
Просмотров: 3180 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
  Полезные материалы  

В нашем каталоге файлов можно найти много полезной информации. Также советуем заглянуть в каталог статей: в нем есть полезные статьи по темам: Экономика предприятия, Общая экономика, Финансы и Кредит, также Словарь терминов по экономике, Маркетинг, Бухучет и Мировая экономика
Также есть полезная страница Факультеты МИФИ, которая расскажет о том, какие есть в МИФИ факультеты.
Меню
 

Навигация
Теория вероятностей и математическая статистика (ТерВер и МатСтат) [17]
Математический анализ (МатАн) [67]
Математические методы в экономике [24]
 

Поиск
 

Онлайн
Онлайн всего: 1
Гостей: 1
Пользователей: 0
 

Статистика


Рейтинг@Mail.ru

 


2007 - 2024 © Ni-Cd. All Rights Reserved