Смешанным произведением трёх векторов называют число, равное . Обозначается . Здесь первые два вектора умножаются векторно и затем полученный вектор умножается скалярно на третий вектор . Очевидно, такое произведение есть некоторое число.
Рассмотрим свойства смешанного произведения.
- Геометрический смысл смешанного произведения. Смешанное
произведение 3-х векторов с точностью до знака равно объёму
параллелепипеда, построенного на этих векторах, как на рёбрах, т.е. .
Таким образом, и .
Доказательство. Отложим векторы от общего начала и построим на них параллелепипед. Обозначим и заметим, что . По определению скалярного произведения
. Предполагая, что и обозначив через h высоту параллелепипеда, находим .
Таким образом, при
Если же , то и . Следовательно, .
Объединяя оба эти случая, получаем или .
Из доказательства этого свойства в частности следует, что если тройка векторов правая, то смешанное произведение , а если – левая, то .
- Для любых векторов , , справедливо равенство
.
Доказательство этого свойства следует из свойства 1. Действительно, легко показать, что и . Причём знаки "+" и "–" берутся одновременно, т.к. углы между векторами и и и одновременно острые или тупые.
- При перестановке любых двух сомножителей смешанное произведение меняет знак.
Действительно, если рассмотрим смешанное произведение , то, например, или
.
- Смешанное произведение тогда и только тогда, когда один из сомножителей равен нулю или векторы – компланарны.
Доказательство.
- Предположим, что , т.е. , тогда или или .
Если , то или или . Поэтому – компланарны.
Если , то , , - компланарны.
- Пусть векторы – компланарны и α – плоскость, которой они параллельны , т. е. и . Тогда , а значит , поэтому или .
Т.о., необходимым и достаточным условием компланарности 3-х векторов является равенство нулю их смешанного произведения. Кроме того, отсюда следует, что три вектора образуют базис в пространстве, если .
Если векторы заданы в координатной форме , то можно показать, что их смешанное произведение находится по формуле:
.
Т. о., смешанное произведение равно определителю третьего порядка, у которого в первой строке стоят координаты первого вектора, во второй строке – координаты второго вектора и в третьей строке – третьего вектора.
Примеры.
- Показать, что векторы образуют базис в пространстве.
, т.е. векторы – базис.
- Найти объём пирамиды с вершинами в точках A(2; -2; 0), B(-1; 4; -4), C(4; -8; 5), D(1; -7; 0). Правую или левую тройку образуют векторы и ?
Т. к. , то тройка векторов левая.
- Предположим, что , т.е. , тогда или или .