СРАВНЕНИЕ БЕСКОНЕЧНО МАЛЫХ ФУНКЦИЙ
Пусть при x→a функции f(x) и g(x) являются бесконечно малыми. Тогда будем пользоваться следующими определениями.
- Если , то f(x) называется бесконечно малой высшего порядка, чем g(x) (относительно g(x)).
- Если , то функции f(x) и g(x) называются бесконечно малыми одногопорядка.
- Если , то f(x) называется бесконечно малой k-го порядка относительноg(x).
Если , то функции f(x) и g(x) называются эквивалентными бесконечно малыми. В этом случае обе функции стремятся к нулю примерно с одинаковой скоростью. Эквивалентные бесконечно малые будем обозначать f ≈ g.
Примеры.
- Пусть f(x)=x2,g(x)=5x. Функции являются бесконечно малыми при x→0. Найдем . Следовательно, f(x) – бесконечно малая высшего порядка относительно g(x).
- Пусть f(x)=x2–4,g(x)=x2–5x+6 – бесконечно малые при x→2.
.
Поэтому f(x) и g(x) одного порядка.
- f(x)=tg2x,g(x) = 2x – бесконечно малые при х→0.
.
Следовательно, f ≈ g.
- – бесконечно малые при n→∞.
– этот предел не существует. Поэтому говорят, что функции f и g не сравнимы.
При вычислении пределов полезно помнить о следующем свойстве эквивалентных бесконечно малых функций.
Теорема. Пусть f и g – бесконечно малые функции при х→а. Если и f ≈ f1, g ≈ g1, то , т.е. если отношение двух бесконечно малых имеет предел, то этот предел не изменится, если каждую из бесконечно малых заменить эквивалентной бесконечно малой.
Доказательство. Имеем . Тогда
,
что и требовалось доказать.
Докажите самостоятельно эквивалентность следующих бесконечно малых функций при
x→0: sinx ≈ x,tgx ≈ x,arcsinx ≈ x,arctgx ≈ x,1–cosx ≈ x2∕2,loga(1+x) ≈ x/lna,ln (1+x) ≈ x,(1+x)m–1 ≈ mx,ax–1 ≈ xlna,ex–1 ≈ x.
Примеры.
- .
- .