Ранее мы видели, что если u является независимой переменной, то дифференциал функции y=f '(u) имеет вид dy = f '(u)du.
Покажем, что эта форма сохраняется и в том случае, когда u является не независимой переменной, а функцией, т.е. найдем выражение для дифференциала сложной функции. Пусть y=f(u), u=g(x) или y = f(g(x)). Тогда по правилу дифференцирования сложной функции:
.
Следовательно, по определению
, но g'(x)dx= du, поэтому dy= f'(u)du.
Мы доказали следующую теорему.
Теорема. Дифференциал сложной функции y=f(u), для которой u=g(x), имеет тот же вид dy=f'(u)du, какой он имел бы, если бы промежуточный аргумент u был независимой переменной.
Иначе говоря, форма дифференциала не зависит от того, является аргумент функции независимой переменной или функцией другого аргумента. Это свойство дифференциала называется инвариантностью формы дифференциала.
Пример. . Найти dy.
Учитывая свойство инвариантности дифференциала, находим
.