Часто при вычислении пределов какой-либо функции, непосредственное применение теорем о пределах не приводит к желаемой цели. Так, например, нельзя применять теорему о пределе дроби, если ее знаменатель стремится к нулю. Поэтому часто прежде, чем применять эти теоремы, необходимо тождественно преобразовать функцию, предел которой мы ищем.
Условные выражения
характеризуют типы неопределенностей и применяются для обозначения переменных величин, при вычислении предела которых нельзя сразу применять общие свойства пределов.
Рассмотрим некоторые приемы раскрытия неопределенностей.
I. Неопределенность .
- .
- .
При разложении числителя на множители воспользовались правилом деления многочлена на многочлен «углом». Так как число x=1 является корнем многочлена x3 – 6x2 + 11x– 6, то при делении получим
- .
II. Неопределенность .
- .
При вычислении предела числитель и знаменатель данной дроби разделили на x в старшей степени.
- .
- .
- .
При вычислении предела воспользовались равенством ,если x<0.
Следующие виды неопределенностей с помощью алгебраических преобразований функции, стоящей под знаком предела, сводят к одному из рассмотренных выше случаев или .
III. Неопределенность 0 ·∞.
.
IV. Неопределенность ∞ –∞.
- .