Если рассмотреть график функции в окрестности точки x= 0 (см. рис. справа), то ясно видно, что он как бы "разрывается” на отдельные кривые. Аналогично можно рассмотреть функцию, изображенную на рисунке слева в окрестности точки 2. Говорят, что во всех указанных точках соответствующие функции становятся разрывными.
Точка называется точкой разрыва функции y = f(x), если она принадлежит области определения функции или её границе и не является точкой непрерывности.
В этом случае говорят, что при x= x0 функция разрывна. Это может произойти, если в точке x0 функция не определена или не существует предел , или если предел существует, но .
Примеры.
- Рассмотрим функцию:
Эта функция определена во всех точках отрезка [0, 4] и её значение при x = 3 равно 0. Однако, в точке x = 3 функция имеет разрыв, т.к. она не имеет предела при x = 3:
Следует отметить, что f(x) непрерывна во всех остальных точках отрезка [0, 4]. При этом в точке x = 0 она непрерывна справа, а в точке x = 4 – слева, т.к.
.
- Как уже отмечалось, функция разрывна при x = 0. Действительно, при x = 0 функция не определена: .
- Функция разрывна при x = 0. Действительно, . При x = 0 функция не определена.
- Функция определена для всех значений x, кроме x = 0. В этой точке она имеет разрыв, т.к. предел не существует (рисунок см. в лекции 1).
Точки разрыва функции можно разбить на два типа.
Точка разрыва x0 функции f(x) называется точкой разрыва первого рода, если существуют оба односторонних конечных предела и , но они не равны между собой или не равны значению функции в точке x0, т.е. f(x0). Точка разрыва, не являющаяся точкой разрыва первого рода, называется точкой разрыва второго рода.
Примеры: В первом примере точка х=3 является точкой разрыва первого рода. В примерах 2 – 4 все точки разрыва являются точками разрыва второго рода.
- Для функции, изображённой на рисунке точка x = 2 является точкой разрыва первого рода.
- Функция не определена в точке x = 0. Эта точка является точкой разрыва 1-го рода, т.к. в ней существуют пределы справа и слева.